Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Neutron star (NS) mergers are currently the only observed source ofr-process production in the Universe. Yet, it is unclear how muchr-process mass from these mergers is incorporated into star-forming gas to enrich stars. This is crucial to consider as all otherr-process mass estimates in the Universe beyond Earth are based on stellarr-process abundances. Here, we explore the extent to which merger location and host-galaxy properties affect the incorporation ofr-process elements into star-forming gas, and quantify an “enrichment” timescale to account for this process. To put this timescale in context, we analyze a population of 12 gamma-ray bursts (GRBs) with probable associations tor-process kilonovae (GRB-KNe) and 74 short GRBs without claimed KNe, including new nonparametric star formation histories for the GRB-KN hosts. We find the enrichment timescales for this sample are between ≈7 Myr and 1.6 Gyr, suggesting that environmental enrichment is delayed from NS merger occurrence. Moreover, we find a correlation between the amount of environmental enrichment from a single event and increasing host specific star formation rate (sSFR), and little correlation with stellar mass and GRB galactocentric offset. Environments with low sSFRs (<10−10.5yr−1), which comprise 18% of short-GRB hosts and the host of GW170817, will have little to no capacity for stellar enrichment. Our results indicate that not allr-process from NS mergers is incorporated into newly forming stars, and instead some remains “lost” to the circumgalactic medium or intergalactic medium. Future studies should consider these losses to understand the total contribution from NS mergers to the Universe’sr-process budget.more » « lessFree, publicly-accessible full text available March 26, 2026
-
Abstract We present multiwavelength observations of the Swift shortγ-ray burst GRB 231117A, localized to an underlying galaxy at redshiftz= 0.257 at a small projected offset (∼2 kpc). We uncover long-lived X-ray Chandra X-ray Observatory and radio/millimeter (VLA, MeerKAT, and ALMA) afterglow emission, detected to ∼37 days and ∼20 days (rest frame), respectively. We measure a wide jet (∼10 4) and relatively high circumburst density (∼0.07 cm−3) compared to the short GRB population. Our data cannot be easily fit with a standard forward shock model, but they are generally well fit with the incorporation of a refreshed forward shock and a reverse shock at <1 day. We incorporate GRB 231117A into a larger sample of 132 X-ray detected events, 71 of which were radio-observed (17 cm-band detections), for a systematic study of the distributions of redshifts, jet and afterglow properties, galactocentric offsets, and local environments of events with and without detected radio afterglows. Compared to the entire short GRB population, the majority of radio-detected GRBs are at relatively low redshifts (z < 0.6) and have high circumburst densities (>10−2cm−3), consistent with their smaller (<8 kpc) projected galactocentric offsets. We additionally find that 70% of short GRBs with opening angle measurements were radio-detected, indicating the importance of radio afterglows in jet measurements, especially in the cases of wide (>10°) jets where observational evidence of collimation may only be detectable at radio wavelengths. Owing to improved observing strategies and the emergence of sensitive radio facilities, the number of radio-detected short GRBs has quadrupled in the past decade.more » « lessFree, publicly-accessible full text available March 17, 2026
-
Abstract We present a population of 11 of the faintest (>25.5 AB mag) short gamma-ray burst (GRB) host galaxies. We model their sparse available observations using the stellar population inference codeProspector-βand develop a novel implementation to incorporate the galaxy mass–radius relation. Assuming these hosts are randomly drawn from the galaxy population and conditioning this draw on their observed flux and size in a few photometric bands, we determine that these hosts have dwarf galaxy stellar masses of . This is striking as only 14% of short GRB hosts with previous inferred stellar masses hadM*≲ 109M⊙. We further show these short GRBs have smaller physical and host-normalized offsets than the rest of the population, suggesting that the majority of their neutron star (NS) merger progenitors were retained within their hosts. The presumably shallow potentials of these hosts translate to small escape velocities of ∼5.5–80 km s−1, indicative of either low postsupernova systemic velocities or short inspiral times. While short GRBs with identified dwarf host galaxies now comprise ≈14% of the total Swift-detected population, a number are likely missing in the current population, as larger systemic velocities (observed from the Galactic NS population) would result in highly offset short GRBs and less secure host associations. However, the revelation of a population of short GRBs retained in low-mass host galaxies offers a natural explanation for the observedr-process enrichment via NS mergers in Local Group dwarf galaxies, and has implications for gravitational-wave follow-up strategies.more » « less
-
Abstract FRB 20220610A is a high-redshift fast radio burst (FRB) that has not been observed to repeat. Here, we present rest-frame UV and optical Hubble Space Telescope observations of the field of FRB 20220610A. The imaging reveals seven extended sources, one of which we identify as the most likely host galaxy with a spectroscopic redshift ofz= 1.017. We spectroscopically confirm three additional sources to be at the same redshift and identify the system as a compact galaxy group with possible signs of interaction among group members. We determine the host of FRB 20220610A to be a star-forming galaxy with a stellar mass of ≈109.7M⊙, mass-weighted age of ≈2.6 Gyr, and star formation rate (integrated over the last 100 Myr) of ≈1.7M⊙yr−1. These host properties are commensurate with the star-forming field galaxy population atz∼ 1 and trace their properties analogously to the population of low-zFRB hosts. Based on estimates of the total stellar mass of the galaxy group, we calculate a fiducial contribution to the observed dispersion measure from the intragroup medium of ≈90–182 pc cm−3(rest frame). This leaves a significant excess of pc cm−3(in the observer frame); further observation will be required to determine the origin of this excess. Given the low occurrence rates of galaxies in compact groups, the discovery of an FRB in one demonstrates a rare, novel environment in which FRBs can occur. As such groups may represent ongoing or future mergers that can trigger star formation, this supports a young stellar progenitor relative to star formation.more » « less
-
Abstract The delay time distribution of neutron star mergers provides critical insights into binary evolution processes and the merger rate evolution of compact object binaries. However, current observational constraints on this delay time distribution rely on the small sample of Galactic double neutron stars (with uncertain selection effects), a single multimessenger gravitational wave event, and indirect evidence of neutron star mergers based on r -process enrichment. We use a sample of 68 host galaxies of short gamma-ray bursts to place novel constraints on the delay time distribution and leverage this result to infer the merger rate evolution of compact object binaries containing neutron stars. We recover a power-law slope of α = − 1.83 − 0.39 + 0.35 (median and 90% credible interval) with α < −1.31 at 99% credibility, a minimum delay time of t min = 184 − 79 + 67 Myr with t min > 72 Myr at 99% credibility, and a maximum delay time constrained to t max > 7.95 Gyr at 99% credibility. We find these constraints to be broadly consistent with theoretical expectations, although our recovered power-law slope is substantially steeper than the conventional value of α = −1, and our minimum delay time is larger than the typically assumed value of 10 Myr. Pairing this cosmological probe of the fate of compact object binary systems with the Galactic population of double neutron stars will be crucial for understanding the unique selection effects governing both of these populations. In addition to probing a significantly larger redshift regime of neutron star mergers than possible with current gravitational wave detectors, complementing our results with future multimessenger gravitational wave events will also help determine if short gamma-ray bursts ubiquitously result from compact object binary mergers.more » « less
-
Abstract We present the discovery of the radio afterglow of the short gamma-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift ofz∼ 2.4. While radio observations commenced ≲1 day after the burst, no radio emission was detected until ∼11 days. The radio afterglow subsequently brightened by a factor of ∼3 in the span of a week, followed by a rapid decay (a “radio flare”). We find that a forward shock afterglow model cannot self-consistently describe the multiwavelength X-ray and radio data, and underpredicts the flux of the radio flare by a factor of ≈5. We find that the addition of substantial energy injection, which increases the isotropic kinetic energy of the burst by a factor of ≈4, or a reverse shock from a shell collision are viable solutions to match the broadband behavior. Atz∼ 2.4, GRB 210726A is among the highest-redshift short GRBs discovered to date, as well as the most luminous in radio and X-rays. Combining and comparing all previous radio afterglow observations of short GRBs, we find that the majority of published radio searches conclude by ≲10 days after the burst, potentially missing these late-rising, luminous radio afterglows.more » « less
-
Abstract We present the localization and host galaxy of FRB 20190208A, a repeating source of fast radio bursts (FRBs) discovered using CHIME/FRB. As part of the Pinpointing REpeating ChIme Sources with EVN dishes repeater localization program on the European VLBI Network (EVN), we monitored FRB 20190208A for 65.6 hr at ∼1.4 GHz and detected a single burst, which led to its very long baseline interferometry localization with 260 mas uncertainty (2σ). Follow-up optical observations with the MMT Observatory (i≳ 25.7 mag (AB)) found no visible host at the FRB position. Subsequent deeper observations with the Gran Telescopio Canarias, however, revealed an extremely faint galaxy (r= 27.32 ± 0.16 mag), very likely (99.95%) associated with FRB 20190208A. Given the dispersion measure of the FRB (∼580 pc cm−3), even the most conservative redshift estimate ( ) implies that this is the lowest-luminosity FRB host to date (≲108L⊙), even less luminous than the dwarf host of FRB 20121102A. We investigate how localization precision and the depth of optical imaging affect host association and discuss the implications of such a low-luminosity dwarf galaxy. Unlike the other repeaters with low-luminosity hosts, FRB 20190208A has a modest Faraday rotation measure of a few tens of rad m−2, and EVN plus Very Large Array observations reveal no associated compact persistent radio source. We also monitored FRB 20190208A for 40.4 hr over 2 yr as part of the Extragalactic Coherent Light from Astrophysical Transients repeating FRB monitoring campaign on the Nançay Radio Telescope and detected one burst. Our results demonstrate that, in some cases, the robust association of an FRB with a host galaxy will require both high localization precision and deep optical follow-up.more » « lessFree, publicly-accessible full text available November 29, 2025
-
Abstract We present the complete set of Hubble Space Telescope imaging of the binary neutron star merger GW170817 and its optical counterpart AT 2017gfo. Including deep template imaging in F814W, F110W, F140W, and F160W at 3.4 yr post-merger, we reanalyze the full light curve of AT 2017gfo across 12 bands from 5 to 1273 rest-frame days after merger. We obtain four new detections of the short γ -ray burst 170817A afterglow from 109 to 170 rest-frame days post-merger. These detections are consistent with the previously observed β = −0.6 spectral index in the afterglow light curve with no evidence for spectral evolution. We also analyze our limits in the context of kilonova afterglow or IR dust echo emission but find that our limits are not constraining for these models. We use the new data to construct deep optical and IR stacks, reaching limits of M = −6.3 to −4.6 mag, to analyze the local environment around AT 2017gfo and low surface brightness features in its host galaxy NGC 4993. We rule out the presence of any globular cluster at the position of AT 2017gfo to 2.3 × 10 4 L ⊙ , including those with the reddest V − H colors. Finally, we analyze the substructure of NGC 4993 in deep residual imaging and find shell features that extend up to 71.″8 (14.2 kpc) from NGC 4993. The shells have a cumulative stellar mass of 6.3 × 10 8 M ⊙ , roughly 2% of NGC 4993, and mass-weighted ages of >3 Gyr. We conclude that it was unlikely that the GW170817 progenitor system formed in the galaxy merger.more » « less
-
Abstract The detonation of a thin (≲0.03 M ⊙ ) helium shell (He-shell) atop a ∼1 M ⊙ white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g -band absolute magnitude −18.7 mag ≲ M g ≲ −18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag ≲ g ZTF − r ZTF ≲ 0.4 mag) due to strong line-blanketing blueward of ∼5000 Å. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a ∼0.95–1.00 M ⊙ (C/O core + He-shell) progenitor ignited by a ≳0.1 M ⊙ He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at ∼1 μ m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 μ m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population.more » « less
An official website of the United States government
